On choosability with separation of planar graphs with lists of different sizes (1306.5283v1)
Abstract: A (k,d)-list assignment L of a graph G is a mapping that assigns to each vertex v a list L(v) of at least k colors and for any adjacent pair xy, the lists L(x) and L(y) share at most d colors. A graph G is (k,d)-choosable if there exists an L-coloring of G for every (k,d)-list assignment L. This concept is also known as choosability with separation. It is known that planar graphs are (4,1)-choosable but it is not known if planar graphs are (3,1)-choosable. We strengthen the result that planar graphs are (4,1)-choosable by allowing an independent set of vertices to have lists of size 3 instead of 4.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.