Papers
Topics
Authors
Recent
2000 character limit reached

Clinical Relationships Extraction Techniques from Patient Narratives (1306.5170v1)

Published 21 Jun 2013 in cs.IR and cs.CL

Abstract: The Clinical E-Science Framework (CLEF) project was used to extract important information from medical texts by building a system for the purpose of clinical research, evidence-based healthcare and genotype-meets-phenotype informatics. The system is divided into two parts, one part concerns with the identification of relationships between clinically important entities in the text. The full parses and domain-specific grammars had been used to apply many approaches to extract the relationship. In the second part of the system, statistical ML approaches are applied to extract relationship. A corpus of oncology narratives that hand annotated with clinical relationships can be used to train and test a system that has been designed and implemented by supervised ML approaches. Many features can be extracted from these texts that are used to build a model by the classifier. Multiple supervised machine learning algorithms can be applied for relationship extraction. Effects of adding the features, changing the size of the corpus, and changing the type of the algorithm on relationship extraction are examined. Keywords: Text mining; information extraction; NLP; entities; and relations.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.