Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Approximation Algorithm for Sparsest k-Partitioning (1306.4384v2)

Published 18 Jun 2013 in cs.DS

Abstract: Given a graph $G$, the sparsest-cut problem asks to find the set of vertices $S$ which has the least expansion defined as $$\phi_G(S) := \frac{w(E(S,\bar{S}))}{\min \set{w(S), w(\bar{S})}}, $$ where $w$ is the total edge weight of a subset. Here we study the natural generalization of this problem: given an integer $k$, compute a $k$-partition $\set{P_1, \ldots, P_k}$ of the vertex set so as to minimize $$ \phi_k(\set{P_1, \ldots, P_k}) := \max_i \phi_G(P_i). $$ Our main result is a polynomial time bi-criteria approximation algorithm which outputs a $(1 - \e)k$-partition of the vertex set such that each piece has expansion at most $O_{\varepsilon}(\sqrt{\log n \log k})$ times $OPT$. We also study balanced versions of this problem.

Citations (29)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.