Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Compressed sensing of block-sparse positive vectors (1306.3977v2)

Published 17 Jun 2013 in cs.IT, math.IT, and math.OC

Abstract: In this paper we revisit one of the classical problems of compressed sensing. Namely, we consider linear under-determined systems with sparse solutions. A substantial success in mathematical characterization of an $\ell_1$ optimization technique typically used for solving such systems has been achieved during the last decade. Seminal works \cite{CRT,DOnoho06CS} showed that the $\ell_1$ can recover a so-called linear sparsity (i.e. solve systems even when the solution has a sparsity linearly proportional to the length of the unknown vector). Later considerations \cite{DonohoPol,DonohoUnsigned} (as well as our own ones \cite{StojnicCSetam09,StojnicUpper10}) provided the precise characterization of this linearity. In this paper we consider the so-called structured version of the above sparsity driven problem. Namely, we view a special case of sparse solutions, the so-called block-sparse solutions. Typically one employs $\ell_2/\ell_1$-optimization as a variant of the standard $\ell_1$ to handle block-sparse case of sparse solution systems. We considered systems with block-sparse solutions in a series of work \cite{StojnicCSetamBlock09,StojnicUpperBlock10,StojnicICASSP09block,StojnicJSTSP09} where we were able to provide precise performance characterizations if the $\ell_2/\ell_1$-optimization similar to those obtained for the standard $\ell_1$ optimization in \cite{StojnicCSetam09,StojnicUpper10}. Here we look at a similar class of systems where on top of being block-sparse the unknown vectors are also known to have components of the same sign. In this paper we slightly adjust $\ell_2/\ell_1$-optimization to account for the known signs and provide a precise performance characterization of such an adjustment.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.