Stability of Multi-Task Kernel Regression Algorithms (1306.3905v1)
Abstract: We study the stability properties of nonlinear multi-task regression in reproducing Hilbert spaces with operator-valued kernels. Such kernels, a.k.a. multi-task kernels, are appropriate for learning prob- lems with nonscalar outputs like multi-task learning and structured out- put prediction. We show that multi-task kernel regression algorithms are uniformly stable in the general case of infinite-dimensional output spaces. We then derive under mild assumption on the kernel generaliza- tion bounds of such algorithms, and we show their consistency even with non Hilbert-Schmidt operator-valued kernels . We demonstrate how to apply the results to various multi-task kernel regression methods such as vector-valued SVR and functional ridge regression.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.