Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 142 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 420 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Towards a better compressed sensing (1306.3801v2)

Published 17 Jun 2013 in cs.IT, math.IT, and math.OC

Abstract: In this paper we look at a well known linear inverse problem that is one of the mathematical cornerstones of the compressed sensing field. In seminal works \cite{CRT,DOnoho06CS} $\ell_1$ optimization and its success when used for recovering sparse solutions of linear inverse problems was considered. Moreover, \cite{CRT,DOnoho06CS} established for the first time in a statistical context that an unknown vector of linear sparsity can be recovered as a known existing solution of an under-determined linear system through $\ell_1$ optimization. In \cite{DonohoPol,DonohoUnsigned} (and later in \cite{StojnicCSetam09,StojnicUpper10}) the precise values of the linear proportionality were established as well. While the typical $\ell_1$ optimization behavior has been essentially settled through the work of \cite{DonohoPol,DonohoUnsigned,StojnicCSetam09,StojnicUpper10}, we in this paper look at possible upgrades of $\ell_1$ optimization. Namely, we look at a couple of algorithms that turn out to be capable of recovering a substantially higher sparsity than the $\ell_1$. However, these algorithms assume a bit of "feedback" to be able to work at full strength. This in turn then translates the original problem of improving upon $\ell_1$ to designing algorithms that would be able to provide output needed to feed the $\ell_1$ upgrades considered in this papers.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.