Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Guaranteed Classification via Regularized Similarity Learning (1306.3108v2)

Published 13 Jun 2013 in cs.LG

Abstract: Learning an appropriate (dis)similarity function from the available data is a central problem in machine learning, since the success of many machine learning algorithms critically depends on the choice of a similarity function to compare examples. Despite many approaches for similarity metric learning have been proposed, there is little theoretical study on the links between similarity met- ric learning and the classification performance of the result classifier. In this paper, we propose a regularized similarity learning formulation associated with general matrix-norms, and establish their generalization bounds. We show that the generalization error of the resulting linear separator can be bounded by the derived generalization bound of similarity learning. This shows that a good gen- eralization of the learnt similarity function guarantees a good classification of the resulting linear classifier. Our results extend and improve those obtained by Bellet at al. [3]. Due to the techniques dependent on the notion of uniform stability [6], the bound obtained there holds true only for the Frobenius matrix- norm regularization. Our techniques using the Rademacher complexity [5] and its related Khinchin-type inequality enable us to establish bounds for regularized similarity learning formulations associated with general matrix-norms including sparse L 1 -norm and mixed (2,1)-norm.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube