Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

I/O-Efficient Planar Range Skyline and Attrition Priority Queues (1306.2815v1)

Published 12 Jun 2013 in cs.DS

Abstract: In the planar range skyline reporting problem, we store a set P of n 2D points in a structure such that, given a query rectangle Q = [a_1, a_2] x [b_1, b_2], the maxima (a.k.a. skyline) of P \cap Q can be reported efficiently. The query is 3-sided if an edge of Q is grounded, giving rise to two variants: top-open (b_2 = \infty) and left-open (a_1 = -\infty) queries. All our results are in external memory under the O(n/B) space budget, for both the static and dynamic settings: * For static P, we give structures that answer top-open queries in O(log_B n + k/B), O(loglog_B U + k/B), and O(1 + k/B) I/Os when the universe is R2, a U x U grid, and a rank space grid [O(n)]2, respectively (where k is the number of reported points). The query complexity is optimal in all cases. * We show that the left-open case is harder, such that any linear-size structure must incur \Omega((n/B)e + k/B) I/Os for a query. We show that this case is as difficult as the general 4-sided queries, for which we give a static structure with the optimal query cost O((n/B)e + k/B). * We give a dynamic structure that supports top-open queries in O(log_2Be (n/B) + k/B1-e) I/Os, and updates in O(log_2Be (n/B)) I/Os, for any e satisfying 0 \le e \le 1. This leads to a dynamic structure for 4-sided queries with optimal query cost O((n/B)e + k/B), and amortized update cost O(log (n/B)). As a contribution of independent interest, we propose an I/O-efficient version of the fundamental structure priority queue with attrition (PQA). Our PQA supports FindMin, DeleteMin, and InsertAndAttrite all in O(1) worst case I/Os, and O(1/B) amortized I/Os per operation. We also add the new CatenateAndAttrite operation that catenates two PQAs in O(1) worst case and O(1/B) amortized I/Os. This operation is a non-trivial extension to the classic PQA of Sundar, even in internal memory.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.