Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimax Theory for High-dimensional Gaussian Mixtures with Sparse Mean Separation (1306.2035v1)

Published 9 Jun 2013 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: While several papers have investigated computationally and statistically efficient methods for learning Gaussian mixtures, precise minimax bounds for their statistical performance as well as fundamental limits in high-dimensional settings are not well-understood. In this paper, we provide precise information theoretic bounds on the clustering accuracy and sample complexity of learning a mixture of two isotropic Gaussians in high dimensions under small mean separation. If there is a sparse subset of relevant dimensions that determine the mean separation, then the sample complexity only depends on the number of relevant dimensions and mean separation, and can be achieved by a simple computationally efficient procedure. Our results provide the first step of a theoretical basis for recent methods that combine feature selection and clustering.

Citations (63)

Summary

We haven't generated a summary for this paper yet.