Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Comparing Edge Detection Methods based on Stochastic Entropies and Distances for PolSAR Imagery (1306.2003v1)

Published 9 Jun 2013 in math.ST, cs.CV, eess.IV, and stat.TH

Abstract: Polarimetric synthetic aperture radar (PolSAR) has achieved a prominent position as a remote imaging method. However, PolSAR images are contaminated by speckle noise due to the coherent illumination employed during the data acquisition. This noise provides a granular aspect to the image, making its processing and analysis (such as in edge detection) hard tasks. This paper discusses seven methods for edge detection in multilook PolSAR images. In all methods, the basic idea consists in detecting transition points in the finest possible strip of data which spans two regions. The edge is contoured using the transitions points and a B-spline curve. Four stochastic distances, two differences of entropies, and the maximum likelihood criterion were used under the scaled complex Wishart distribution; the first six stem from the h-phi class of measures. The performance of the discussed detection methods was quantified and analyzed by the computational time and probability of correct edge detection, with respect to the number of looks, the backscatter matrix as a whole, the SPAN, the covariance an the spatial resolution. The detection procedures were applied to three real PolSAR images. Results provide evidence that the methods based on the Bhattacharyya distance and the difference of Shannon entropies outperform the other techniques.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.