Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Graphical Transformation for Belief Propagation: Maximum Weight Matchings and Odd-Sized Cycles (1306.1167v2)

Published 5 Jun 2013 in cs.DS

Abstract: We study the Maximum Weight Matching (MWM) problem for general graphs through the max-product Belief Propagation (BP) and related Linear Programming (LP). The BP approach provides distributed heuristics for finding the Maximum A Posteriori (MAP) assignment in a joint probability distribution represented by a Graphical Model (GM) and respective LPs can be considered as continuous relaxations of the discrete MAP problem. It was recently shown that a BP algorithm converges to the correct MWM assignment under a simple GM formulation of MAP/MWM as long as the corresponding LP relaxation is tight. First, under the motivation for forcing the tightness condition, we consider a new GM formulation of MWM, say C-GM, using non-intersecting odd-sized cycles in the graph: the new corresponding LP relaxation, say C-LP, becomes tight for more MWM instances. However, the tightness of C-LP now does not guarantee such convergence and correctness of the new BP on C-GM. To address the issue, we introduce a novel graph transformation applied to C-GM, which results in another GM formulation of MWM, and prove that the respective BP on it converges to the correct MAP/MWM assignment as long as C-LP is tight. Finally, we also show that C-LP always has half-integral solutions, which leads to an efficient BP-based MWM heuristic consisting of making sequential, `cutting plane', modifications to the underlying GM. Our experiments show that this BP-based cutting plane heuristic performs as well as that based on traditional LP solvers.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.