Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Graphical Transformation for Belief Propagation: Maximum Weight Matchings and Odd-Sized Cycles (1306.1167v2)

Published 5 Jun 2013 in cs.DS

Abstract: We study the Maximum Weight Matching (MWM) problem for general graphs through the max-product Belief Propagation (BP) and related Linear Programming (LP). The BP approach provides distributed heuristics for finding the Maximum A Posteriori (MAP) assignment in a joint probability distribution represented by a Graphical Model (GM) and respective LPs can be considered as continuous relaxations of the discrete MAP problem. It was recently shown that a BP algorithm converges to the correct MWM assignment under a simple GM formulation of MAP/MWM as long as the corresponding LP relaxation is tight. First, under the motivation for forcing the tightness condition, we consider a new GM formulation of MWM, say C-GM, using non-intersecting odd-sized cycles in the graph: the new corresponding LP relaxation, say C-LP, becomes tight for more MWM instances. However, the tightness of C-LP now does not guarantee such convergence and correctness of the new BP on C-GM. To address the issue, we introduce a novel graph transformation applied to C-GM, which results in another GM formulation of MWM, and prove that the respective BP on it converges to the correct MAP/MWM assignment as long as C-LP is tight. Finally, we also show that C-LP always has half-integral solutions, which leads to an efficient BP-based MWM heuristic consisting of making sequential, `cutting plane', modifications to the underlying GM. Our experiments show that this BP-based cutting plane heuristic performs as well as that based on traditional LP solvers.

Citations (5)

Summary

We haven't generated a summary for this paper yet.