Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On model selection consistency of regularized M-estimators (1305.7477v8)

Published 31 May 2013 in math.ST, cs.LG, math.OC, stat.ME, stat.ML, and stat.TH

Abstract: Regularized M-estimators are used in diverse areas of science and engineering to fit high-dimensional models with some low-dimensional structure. Usually the low-dimensional structure is encoded by the presence of the (unknown) parameters in some low-dimensional model subspace. In such settings, it is desirable for estimates of the model parameters to be \emph{model selection consistent}: the estimates also fall in the model subspace. We develop a general framework for establishing consistency and model selection consistency of regularized M-estimators and show how it applies to some special cases of interest in statistical learning. Our analysis identifies two key properties of regularized M-estimators, referred to as geometric decomposability and irrepresentability, that ensure the estimators are consistent and model selection consistent.

Citations (45)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube