Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Regression techniques for subspace-based black-box state-space system identification: an overview (1305.7121v1)

Published 30 May 2013 in cs.SY

Abstract: As far as the identification of linear time-invariant state-space representation is concerned, among all of the solutions available in the literature, the subspace-based state-space model identification techniques have proved their efficiency in many practical cases since the beginning of the 90's. This paper introduces an overview of these techniques by focusing on their formulation as a least-squares problem. Apart from an article written by J. Qin, to the author's knowledge, such a regression formulation is not totally investigated in the books which can be considered as the references as far as subspace-based identification is concerned. Thus, in this paper, a specific attention is payed to the regression-based techniques used to identify systems working under open-loop as well as closed-loop conditions.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)