Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Mining top-k granular association rules for recommendation (1305.4801v1)

Published 21 May 2013 in cs.IR

Abstract: Recommender systems are important for e-commerce companies as well as researchers. Recently, granular association rules have been proposed for cold-start recommendation. However, existing approaches reserve only globally strong rules; therefore some users may receive no recommendation at all. In this paper, we propose to mine the top-k granular association rules for each user. First we define three measures of granular association rules. These are the source coverage which measures the user granule size, the target coverage which measures the item granule size, and the confidence which measures the strength of the association. With the confidence measure, rules can be ranked according to their strength. Then we propose algorithms for training the recommender and suggesting items to each user. Experimental are undertaken on a publicly available data set MovieLens. Results indicate that the appropriate setting of granule can avoid over-fitting and at the same time, help obtaining high recommending accuracy.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)