Papers
Topics
Authors
Recent
2000 character limit reached

A Lower Bound for Fourier Transform Computation in a Linear Model Over 2x2 Unitary Gates Using Matrix Entropy (1305.4745v1)

Published 21 May 2013 in cs.CC

Abstract: Obtaining a non-trivial (super-linear) lower bound for computation of the Fourier transform in the linear circuit model has been a long standing open problem. All lower bounds so far have made strong restrictions on the computational model. One of the most well known results, by Morgenstern from 1973, provides an $\Omega(n \log n)$ lower bound for the \emph{unnormalized} FFT when the constants used in the computation are bounded. The proof uses a potential function related to a determinant. The determinant of the unnormalized Fourier transform is $n{n/2}$, and thus by showing that it can grow by at most a constant factor after each step yields the result. This classic result, however, does not explain why the \emph{normalized} Fourier transform, which has a unit determinant, should take $\Omega(n\log n)$ steps to compute. In this work we show that in a layered linear circuit model restricted to unitary $2\times 2$ gates, one obtains an $\Omega(n\log n)$ lower bound. The well known FFT works in this model. The main argument concluded from this work is that a potential function that might eventually help proving the $\Omega(n\log n)$ conjectured lower bound for computation of Fourier transform is not related to matrix determinant, but rather to a notion of matrix entropy.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.