A Lower Bound for Fourier Transform Computation in a Linear Model Over 2x2 Unitary Gates Using Matrix Entropy (1305.4745v1)
Abstract: Obtaining a non-trivial (super-linear) lower bound for computation of the Fourier transform in the linear circuit model has been a long standing open problem. All lower bounds so far have made strong restrictions on the computational model. One of the most well known results, by Morgenstern from 1973, provides an $\Omega(n \log n)$ lower bound for the \emph{unnormalized} FFT when the constants used in the computation are bounded. The proof uses a potential function related to a determinant. The determinant of the unnormalized Fourier transform is $n{n/2}$, and thus by showing that it can grow by at most a constant factor after each step yields the result. This classic result, however, does not explain why the \emph{normalized} Fourier transform, which has a unit determinant, should take $\Omega(n\log n)$ steps to compute. In this work we show that in a layered linear circuit model restricted to unitary $2\times 2$ gates, one obtains an $\Omega(n\log n)$ lower bound. The well known FFT works in this model. The main argument concluded from this work is that a potential function that might eventually help proving the $\Omega(n\log n)$ conjectured lower bound for computation of Fourier transform is not related to matrix determinant, but rather to a notion of matrix entropy.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.