Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Lower Bound for Fourier Transform Computation in a Linear Model Over 2x2 Unitary Gates Using Matrix Entropy (1305.4745v1)

Published 21 May 2013 in cs.CC

Abstract: Obtaining a non-trivial (super-linear) lower bound for computation of the Fourier transform in the linear circuit model has been a long standing open problem. All lower bounds so far have made strong restrictions on the computational model. One of the most well known results, by Morgenstern from 1973, provides an $\Omega(n \log n)$ lower bound for the \emph{unnormalized} FFT when the constants used in the computation are bounded. The proof uses a potential function related to a determinant. The determinant of the unnormalized Fourier transform is $n{n/2}$, and thus by showing that it can grow by at most a constant factor after each step yields the result. This classic result, however, does not explain why the \emph{normalized} Fourier transform, which has a unit determinant, should take $\Omega(n\log n)$ steps to compute. In this work we show that in a layered linear circuit model restricted to unitary $2\times 2$ gates, one obtains an $\Omega(n\log n)$ lower bound. The well known FFT works in this model. The main argument concluded from this work is that a potential function that might eventually help proving the $\Omega(n\log n)$ conjectured lower bound for computation of Fourier transform is not related to matrix determinant, but rather to a notion of matrix entropy.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)