Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Belief Propagation for Linear Programming (1305.4130v1)

Published 17 May 2013 in cs.AI and cs.DS

Abstract: Belief Propagation (BP) is a popular, distributed heuristic for performing MAP computations in Graphical Models. BP can be interpreted, from a variational perspective, as minimizing the Bethe Free Energy (BFE). BP can also be used to solve a special class of Linear Programming (LP) problems. For this class of problems, MAP inference can be stated as an integer LP with an LP relaxation that coincides with minimization of the BFE at zero temperature". We generalize these prior results and establish a tight characterization of the LP problems that can be formulated as an equivalent LP relaxation of MAP inference. Moreover, we suggest an efficient, iterative annealing BP algorithm for solving this broader class of LP problems. We demonstrate the algorithm's performance on a set of weighted matching problems by using it as a cutting plane method to solve a sequence of LPs tightened by addingblossom'' inequalities.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.