Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Contractive De-noising Auto-encoder (1305.4076v5)

Published 17 May 2013 in cs.LG

Abstract: Auto-encoder is a special kind of neural network based on reconstruction. De-noising auto-encoder (DAE) is an improved auto-encoder which is robust to the input by corrupting the original data first and then reconstructing the original input by minimizing the reconstruction error function. And contractive auto-encoder (CAE) is another kind of improved auto-encoder to learn robust feature by introducing the Frobenius norm of the Jacobean matrix of the learned feature with respect to the original input. In this paper, we combine de-noising auto-encoder and contractive auto- encoder, and propose another improved auto-encoder, contractive de-noising auto- encoder (CDAE), which is robust to both the original input and the learned feature. We stack CDAE to extract more abstract features and apply SVM for classification. The experiment result on benchmark dataset MNIST shows that our proposed CDAE performed better than both DAE and CAE, proving the effective of our method.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube