Papers
Topics
Authors
Recent
2000 character limit reached

Multi-View Learning for Web Spam Detection (1305.3814v2)

Published 16 May 2013 in cs.IR and cs.LG

Abstract: Spam pages are designed to maliciously appear among the top search results by excessive usage of popular terms. Therefore, spam pages should be removed using an effective and efficient spam detection system. Previous methods for web spam classification used several features from various information sources (page contents, web graph, access logs, etc.) to detect web spam. In this paper, we follow page-level classification approach to build fast and scalable spam filters. We show that each web page can be classified with satisfiable accuracy using only its own HTML content. In order to design a multi-view classification system, we used state-of-the-art spam classification methods with distinct feature sets (views) as the base classifiers. Then, a fusion model is learned to combine the output of the base classifiers and make final prediction. Results show that multi-view learning significantly improves the classification performance, namely AUC by 22%, while providing linear speedup for parallel execution.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.