Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Computing Cliques is Intractable (1305.3218v2)

Published 14 May 2013 in cs.CC

Abstract: The class P is in fact a proper sub-class of NP. We explore topological properties of the Hamming space 2[n] where [n]={1, 2,..., n}. With the developed theory, we show: (i) a theorem that is closely related to Erdos and Rado's sunflower lemma, and claims a stronger statement in most cases, (ii) a new approach to prove the exponential monotone circuit complexity of the clique problem, (iii) NC \ne NP through the impossibility of a Boolean circuit with poly-log depth to compute cliques, based on the construction of (ii), and (iv) P \ne NP through the exponential circuit complexity of the clique problem, based on the construction of (iii). Item (i) leads to the existence of a sunflower with a small core in certain families of sets, which is not an obvious consequence of the sunflower lemma. In (iv), we show that any Boolean circuit computing the clique function CLIQUE_{n,k} (k=n{1/4}) has a size exponential in n. Thus, we will separate P/poly from NP also. Razborov and Rudich showed strong evidence that no natural proof can prove exponential circuit complexity of a Boolean function. We confirm that the proofs for (iii) and (iv) are not natural.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)