Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Stochastic Collapsed Variational Bayesian Inference for Latent Dirichlet Allocation (1305.2452v1)

Published 10 May 2013 in cs.LG

Abstract: In the internet era there has been an explosion in the amount of digital text information available, leading to difficulties of scale for traditional inference algorithms for topic models. Recent advances in stochastic variational inference algorithms for latent Dirichlet allocation (LDA) have made it feasible to learn topic models on large-scale corpora, but these methods do not currently take full advantage of the collapsed representation of the model. We propose a stochastic algorithm for collapsed variational Bayesian inference for LDA, which is simpler and more efficient than the state of the art method. We show connections between collapsed variational Bayesian inference and MAP estimation for LDA, and leverage these connections to prove convergence properties of the proposed algorithm. In experiments on large-scale text corpora, the algorithm was found to converge faster and often to a better solution than the previous method. Human-subject experiments also demonstrated that the method can learn coherent topics in seconds on small corpora, facilitating the use of topic models in interactive document analysis software.

Citations (142)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.