Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Strong chromatic index of chordless graphs (1305.2009v2)

Published 9 May 2013 in math.CO and cs.DM

Abstract: A strong edge colouring of a graph is an assignment of colours to the edges of the graph such that for every colour, the set of edges that are given that colour form an induced matching in the graph. The strong chromatic index of a graph $G$, denoted by $\chi'_s(G)$, is the minimum number of colours needed in any strong edge colouring of $G$. A graph is said to be \emph{chordless} if there is no cycle in the graph that has a chord. Faudree, Gy\'arf\'as, Schelp and Tuza~[The Strong Chromatic Index of Graphs, Ars Combin., 29B (1990), pp.~205--211] considered a particular subclass of chordless graphs, namely the class of graphs in which all the cycle lengths are multiples of four, and asked whether the strong chromatic index of these graphs can be bounded by a linear function of the maximum degree. Chang and Narayanan~[Strong Chromatic Index of 2-degenerate Graphs, J. Graph Theory, 73(2) (2013), pp.~119--126] answered this question in the affirmative by proving that if $G$ is a chordless graph with maximum degree $\Delta$, then $\chi'_s(G) \leq 8\Delta -6$. We improve this result by showing that for every chordless graph $G$ with maximum degree $\Delta$, $\chi'_s(G)\leq 3\Delta$. This bound is tight up to to an additive constant.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.