Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The predictability of consumer visitation patterns (1305.1120v1)

Published 6 May 2013 in physics.soc-ph and cs.SI

Abstract: We consider hundreds of thousands of individual economic transactions to ask: how predictable are consumers in their merchant visitation patterns? Our results suggest that, in the long-run, much of our seemingly elective activity is actually highly predictable. Notwithstanding a wide range of individual preferences, shoppers share regularities in how they visit merchant locations over time. Yet while aggregate behavior is largely predictable, the interleaving of shopping events introduces important stochastic elements at short time scales. These short- and long-scale patterns suggest a theoretical upper bound on predictability, and describe the accuracy of a Markov model in predicting a person's next location. We incorporate population-level transition probabilities in the predictive models, and find that in many cases these improve accuracy. While our results point to the elusiveness of precise predictions about where a person will go next, they suggest the existence, at large time-scales, of regularities across the population.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.