Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Marginal AMP Chain Graphs (1305.0751v6)

Published 3 May 2013 in stat.ML and cs.AI

Abstract: We present a new family of models that is based on graphs that may have undirected, directed and bidirected edges. We name these new models marginal AMP (MAMP) chain graphs because each of them is Markov equivalent to some AMP chain graph under marginalization of some of its nodes. However, MAMP chain graphs do not only subsume AMP chain graphs but also multivariate regression chain graphs. We describe global and pairwise Markov properties for MAMP chain graphs and prove their equivalence for compositional graphoids. We also characterize when two MAMP chain graphs are Markov equivalent. For Gaussian probability distributions, we also show that every MAMP chain graph is Markov equivalent to some directed and acyclic graph with deterministic nodes under marginalization and conditioning on some of its nodes. This is important because it implies that the independence model represented by a MAMP chain graph can be accounted for by some data generating process that is partially observed and has selection bias. Finally, we modify MAMP chain graphs so that they are closed under marginalization for Gaussian probability distributions. This is a desirable feature because it guarantees parsimonious models under marginalization.

Citations (24)

Summary

We haven't generated a summary for this paper yet.