Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Model Selection for High-Dimensional Regression under the Generalized Irrepresentability Condition (1305.0355v1)

Published 2 May 2013 in math.ST, cs.IT, cs.LG, math.IT, stat.ME, stat.ML, and stat.TH

Abstract: In the high-dimensional regression model a response variable is linearly related to $p$ covariates, but the sample size $n$ is smaller than $p$. We assume that only a small subset of covariates is active' (i.e., the corresponding coefficients are non-zero), and consider the model-selection problem of identifying the active covariates. A popular approach is to estimate the regression coefficients through the Lasso ($\ell_1$-regularized least squares). This is known to correctly identify the active set only if the irrelevant covariates are roughly orthogonal to the relevant ones, as quantified through the so calledirrepresentability' condition. In this paper we study the Gauss-Lasso' selector, a simple two-stage method that first solves the Lasso, and then performs ordinary least squares restricted to the Lasso active set. We formulategeneralized irrepresentability condition' (GIC), an assumption that is substantially weaker than irrepresentability. We prove that, under GIC, the Gauss-Lasso correctly recovers the active set.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.