Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Dictionary LASSO: Guaranteed Sparse Recovery under Linear Transformation (1305.0047v2)

Published 30 Apr 2013 in stat.ML

Abstract: We consider the following signal recovery problem: given a measurement matrix $\Phi\in \mathbb{R}{n\times p}$ and a noisy observation vector $c\in \mathbb{R}{n}$ constructed from $c = \Phi\theta* + \epsilon$ where $\epsilon\in \mathbb{R}{n}$ is the noise vector whose entries follow i.i.d. centered sub-Gaussian distribution, how to recover the signal $\theta*$ if $D\theta*$ is sparse {\rca under a linear transformation} $D\in\mathbb{R}{m\times p}$? One natural method using convex optimization is to solve the following problem: $$\min_{\theta} {1\over 2}|\Phi\theta - c|2 + \lambda|D\theta|1.$$ This paper provides an upper bound of the estimate error and shows the consistency property of this method by assuming that the design matrix $\Phi$ is a Gaussian random matrix. Specifically, we show 1) in the noiseless case, if the condition number of $D$ is bounded and the measurement number $n\geq \Omega(s\log(p))$ where $s$ is the sparsity number, then the true solution can be recovered with high probability; and 2) in the noisy case, if the condition number of $D$ is bounded and the measurement increases faster than $s\log(p)$, that is, $s\log(p)=o(n)$, the estimate error converges to zero with probability 1 when $p$ and $s$ go to infinity. Our results are consistent with those for the special case $D=\bold{I}{p\times p}$ (equivalently LASSO) and improve the existing analysis. The condition number of $D$ plays a critical role in our analysis. We consider the condition numbers in two cases including the fused LASSO and the random graph: the condition number in the fused LASSO case is bounded by a constant, while the condition number in the random graph case is bounded with high probability if $m\over p$ (i.e., $#text{edge}\over #text{vertex}$) is larger than a certain constant. Numerical simulations are consistent with our theoretical results.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)