Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Regret Minimization in Non-Zero-Sum Games with Applications to Building Champion Multiplayer Computer Poker Agents (1305.0034v1)

Published 30 Apr 2013 in cs.GT and cs.MA

Abstract: In two-player zero-sum games, if both players minimize their average external regret, then the average of the strategy profiles converges to a Nash equilibrium. For n-player general-sum games, however, theoretical guarantees for regret minimization are less understood. Nonetheless, Counterfactual Regret Minimization (CFR), a popular regret minimization algorithm for extensive-form games, has generated winning three-player Texas Hold'em agents in the Annual Computer Poker Competition (ACPC). In this paper, we provide the first set of theoretical properties for regret minimization algorithms in non-zero-sum games by proving that solutions eliminate iterative strict domination. We formally define \emph{dominated actions} in extensive-form games, show that CFR avoids iteratively strictly dominated actions and strategies, and demonstrate that removing iteratively dominated actions is enough to win a mock tournament in a small poker game. In addition, for two-player non-zero-sum games, we bound the worst case performance and show that in practice, regret minimization can yield strategies very close to equilibrium. Our theoretical advancements lead us to a new modification of CFR for games with more than two players that is more efficient and may be used to generate stronger strategies than previously possible. Furthermore, we present a new three-player Texas Hold'em poker agent that was built using CFR and a novel game decomposition method. Our new agent wins the three-player events of the 2012 ACPC and defeats the winning three-player programs from previous competitions while requiring less resources to generate than the 2011 winner. Finally, we show that our CFR modification computes a strategy of equal quality to our new agent in a quarter of the time of standard CFR using half the memory.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)