Regret Minimization in Non-Zero-Sum Games with Applications to Building Champion Multiplayer Computer Poker Agents (1305.0034v1)
Abstract: In two-player zero-sum games, if both players minimize their average external regret, then the average of the strategy profiles converges to a Nash equilibrium. For n-player general-sum games, however, theoretical guarantees for regret minimization are less understood. Nonetheless, Counterfactual Regret Minimization (CFR), a popular regret minimization algorithm for extensive-form games, has generated winning three-player Texas Hold'em agents in the Annual Computer Poker Competition (ACPC). In this paper, we provide the first set of theoretical properties for regret minimization algorithms in non-zero-sum games by proving that solutions eliminate iterative strict domination. We formally define \emph{dominated actions} in extensive-form games, show that CFR avoids iteratively strictly dominated actions and strategies, and demonstrate that removing iteratively dominated actions is enough to win a mock tournament in a small poker game. In addition, for two-player non-zero-sum games, we bound the worst case performance and show that in practice, regret minimization can yield strategies very close to equilibrium. Our theoretical advancements lead us to a new modification of CFR for games with more than two players that is more efficient and may be used to generate stronger strategies than previously possible. Furthermore, we present a new three-player Texas Hold'em poker agent that was built using CFR and a novel game decomposition method. Our new agent wins the three-player events of the 2012 ACPC and defeats the winning three-player programs from previous competitions while requiring less resources to generate than the 2011 winner. Finally, we show that our CFR modification computes a strategy of equal quality to our new agent in a quarter of the time of standard CFR using half the memory.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.