Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Convexity of Error Rates in Digital Communications (1304.8102v1)

Published 30 Apr 2013 in cs.IT and math.IT

Abstract: Convexity properties of error rates of a class of decoders, including the ML/min-distance one as a special case, are studied for arbitrary constellations, bit mapping and coding. Earlier results obtained for the AWGN channel are extended to a wide class of noise densities, including unimodal and spherically-invariant noise. Under these broad conditions, symbol and bit error rates are shown to be convex functions of the SNR in the high-SNR regime with an explicitly-determined threshold, which depends only on the constellation dimensionality and minimum distance, thus enabling an application of the powerful tools of convex optimization to such digital communication systems in a rigorous way. It is the decreasing nature of the noise power density around the decision region boundaries that insures the convexity of symbol error rates in the general case. The known high/low SNR bounds of the convexity/concavity regions are tightened and no further improvement is shown to be possible in general. The high SNR bound fits closely into the channel coding theorem: all codes, including capacity-achieving ones, whose decision regions include the hardened noise spheres (from the noise sphere hardening argument in the channel coding theorem) satisfies this high SNR requirement and thus has convex error rates in both SNR and noise power. We conjecture that all capacity-achieving codes have convex error rates. Convexity properties in signal amplitude and noise power are also investigated. Some applications of the results are discussed. In particular, it is shown that fading is convexity-preserving and is never good in low dimensions under spherically-invariant noise, which may also include any linear diversity combining.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sergey Loyka (39 papers)
  2. Victoria Kostina (49 papers)
  3. Francois Gagnon (7 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.