Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Exact Weight Subgraphs and the k-Sum Conjecture (1304.7558v1)

Published 29 Apr 2013 in cs.DS and cs.CC

Abstract: We consider the Exact-Weight-H problem of finding a (not necessarily induced) subgraph H of weight 0 in an edge-weighted graph G. We show that for every H, the complexity of this problem is strongly related to that of the infamous k-Sum problem. In particular, we show that under the k-Sum Conjecture, we can achieve tight upper and lower bounds for the Exact-Weight-H problem for various subgraphs H such as matching, star, path, and cycle. One interesting consequence is that improving on the O(n3) upper bound for Exact-Weight-4-Path or Exact-Weight-5-Path will imply improved algorithms for 3-Sum, 5-Sum, All-Pairs Shortest Paths and other fundamental problems. This is in sharp contrast to the minimum-weight and (unweighted) detection versions, which can be solved easily in time O(n2). We also show that a faster algorithm for any of the following three problems would yield faster algorithms for the others: 3-Sum, Exact-Weight-3-Matching, and Exact-Weight-3-Star.

Citations (57)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)