Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Finding Hidden Cliques of Size \sqrt{N/e} in Nearly Linear Time (1304.7047v1)

Published 26 Apr 2013 in math.PR, cs.IT, math.IT, math.ST, and stat.TH

Abstract: Consider an Erd\"os-Renyi random graph in which each edge is present independently with probability 1/2, except for a subset $\sC_N$ of the vertices that form a clique (a completely connected subgraph). We consider the problem of identifying the clique, given a realization of such a random graph. The best known algorithm provably finds the clique in linear time with high probability, provided $|\sC_N|\ge 1.261\sqrt{N}$ \cite{dekel2011finding}. Spectral methods can be shown to fail on cliques smaller than $\sqrt{N}$. In this paper we describe a nearly linear time algorithm that succeeds with high probability for $|\sC_N|\ge (1+\eps)\sqrt{N/e}$ for any $\eps>0$. This is the first algorithm that provably improves over spectral methods. We further generalize the hidden clique problem to other background graphs (the standard case corresponding to the complete graph on $N$ vertices). For large girth regular graphs of degree $(\Delta+1)$ we prove that `local' algorithms succeed if $|\sC_N|\ge (1+\eps)N/\sqrt{e\Delta}$ and fail if $|\sC_N|\le(1-\eps)N/\sqrt{e\Delta}$.

Citations (62)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.