Approximating Semi-Matchings in Streaming and in Two-Party Communication (1304.6906v1)
Abstract: We study the communication complexity and streaming complexity of approximating unweighted semi-matchings. A semi-matching in a bipartite graph G = (A, B, E), with n = |A|, is a subset of edges S that matches all A vertices to B vertices with the goal usually being to do this as fairly as possible. While the term 'semi-matching' was coined in 2003 by Harvey et al. [WADS 2003], the problem had already previously been studied in the scheduling literature under different names. We present a deterministic one-pass streaming algorithm that for any 0 <= \epsilon <= 1 uses space O(n{1+\epsilon}) and computes an O(n{(1-\epsilon)/2})-approximation to the semi-matching problem. Furthermore, with O(log n) passes it is possible to compute an O(log n)-approximation with space O(n). In the one-way two-party communication setting, we show that for every \epsilon > 0, deterministic communication protocols for computing an O(n{1/((1+\epsilon)c + 1)})-approximation require a message of size more than cn bits. We present two deterministic protocols communicating n and 2n edges that compute an O(sqrt(n)) and an O(n{1/3})-approximation respectively. Finally, we improve on results of Harvey et al. [Journal of Algorithms 2006] and prove new links between semi-matchings and matchings. While it was known that an optimal semi-matching contains a maximum matching, we show that there is a hierarchical decomposition of an optimal semi-matching into maximum matchings. A similar result holds for semi-matchings that do not admit length-two degree-minimizing paths.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.