Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Approximating Semi-Matchings in Streaming and in Two-Party Communication (1304.6906v1)

Published 25 Apr 2013 in cs.DS

Abstract: We study the communication complexity and streaming complexity of approximating unweighted semi-matchings. A semi-matching in a bipartite graph G = (A, B, E), with n = |A|, is a subset of edges S that matches all A vertices to B vertices with the goal usually being to do this as fairly as possible. While the term 'semi-matching' was coined in 2003 by Harvey et al. [WADS 2003], the problem had already previously been studied in the scheduling literature under different names. We present a deterministic one-pass streaming algorithm that for any 0 <= \epsilon <= 1 uses space O(n{1+\epsilon}) and computes an O(n{(1-\epsilon)/2})-approximation to the semi-matching problem. Furthermore, with O(log n) passes it is possible to compute an O(log n)-approximation with space O(n). In the one-way two-party communication setting, we show that for every \epsilon > 0, deterministic communication protocols for computing an O(n{1/((1+\epsilon)c + 1)})-approximation require a message of size more than cn bits. We present two deterministic protocols communicating n and 2n edges that compute an O(sqrt(n)) and an O(n{1/3})-approximation respectively. Finally, we improve on results of Harvey et al. [Journal of Algorithms 2006] and prove new links between semi-matchings and matchings. While it was known that an optimal semi-matching contains a maximum matching, we show that there is a hierarchical decomposition of an optimal semi-matching into maximum matchings. A similar result holds for semi-matchings that do not admit length-two degree-minimizing paths.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.