Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Efficient Algorithms for Approximate Triangle Counting (1304.6393v1)

Published 23 Apr 2013 in cs.DS

Abstract: Counting the number of triangles in a graph has many important applications in network analysis. Several frequently computed metrics like the clustering coefficient and the transitivity ratio need to count the number of triangles in the network. Furthermore, triangles are one of the most important graph classes considered in network mining. In this paper, we present a new randomized algorithm for approximate triangle counting. The algorithm can be adopted with different sampling methods and give effective triangle counting methods. In particular, we present two sampling methods, called the \textit{$q$-optimal sampling} and the \textit{edge sampling}, which respectively give $O(sm)$ and $O(sn)$ time algorithms with nice error bounds ($m$ and $n$ are respectively the number of edges and vertices in the graph and $s$ is the number of samples). Among others, we show, for example, that if an upper bound $\widetilde{\Deltae}$ is known for the number of triangles incident to every edge, the proposed method provides an $1\pm \epsilon$ approximation which runs in $O( \frac{\widetilde{\Deltae} n \log n}{\widehat{\Deltae} \epsilon2} )$ time, where $\widehat{\Deltae}$ is the average number of triangles incident to an edge. Finally we show that the algorithm can be adopted with streams. Then it, for example, will perform 2 passes over the data (if the size of the graph is known, otherwise it needs 3 passes) and will use $O(sn)$ space.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.