Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Counterexample for the Validity of Using Nuclear Norm as a Convex Surrogate of Rank (1304.6233v2)

Published 23 Apr 2013 in stat.ML and math.OC

Abstract: Rank minimization has attracted a lot of attention due to its robustness in data recovery. To overcome the computational difficulty, rank is often replaced with nuclear norm. For several rank minimization problems, such a replacement has been theoretically proven to be valid, i.e., the solution to nuclear norm minimization problem is also the solution to rank minimization problem. Although it is easy to believe that such a replacement may not always be valid, no concrete example has ever been found. We argue that such a validity checking cannot be done by numerical computation and show, by analyzing the noiseless latent low rank representation (LatLRR) model, that even for very simple rank minimization problems the validity may still break down. As a by-product, we find that the solution to the nuclear norm minimization formulation of LatLRR is non-unique. Hence the results of LatLRR reported in the literature may be questionable.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.