Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Mixture Gaussian Signal Estimation with L_infty Error Metric (1304.6000v1)

Published 22 Apr 2013 in cs.IT and math.IT

Abstract: We consider the problem of estimating an input signal from noisy measurements in both parallel scalar Gaussian channels and linear mixing systems. The performance of the estimation process is quantified by the $\ell_\infty$ norm error metric. We first study the minimum mean $\ell_\infty$ error estimator in parallel scalar Gaussian channels, and verify that, when the input is independent and identically distributed (i.i.d.) mixture Gaussian, the Wiener filter is asymptotically optimal with probability 1. For linear mixing systems with i.i.d. sparse Gaussian or mixture Gaussian inputs, under the assumption that the relaxed belief propagation (BP) algorithm matches Tanaka's fixed point equation, applying the Wiener filter to the output of relaxed BP is also asymptotically optimal with probability 1. However, in order to solve the practical problem where the signal dimension is finite, we apply an estimation algorithm that has been proposed in our previous work, and illustrate that an $\ell_\infty$ error minimizer can be approximated by an $\ell_p$ error minimizer provided the value of $p$ is properly chosen.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.