Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

SW# - GPU enabled exact alignments on genome scale (1304.5966v1)

Published 22 Apr 2013 in cs.DC, cs.CE, and q-bio.GN

Abstract: Sequence alignment is one of the oldest and the most famous problems in bioinformatics. Even after 45 years, for one reason or another, this problem is still actual; current solutions are trade-offs between execution time, memory consumption and accuracy. We purpose SW#, a new CUDA GPU enabled and memory efficient implementation of dynamic programming algorithms for local alignment. In this implementation indels are treated using the affine gap model. Although there are other GPU implementations of the Smith-Waterman algorithm, SW# is the only publicly available implementation that can produce sequence alignments on genome-wide scale. For long sequences, our implementation is at least a few hundred times faster than a CPU version of the same algorithm.

Citations (60)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.