Papers
Topics
Authors
Recent
2000 character limit reached

SW# - GPU enabled exact alignments on genome scale

Published 22 Apr 2013 in cs.DC, cs.CE, and q-bio.GN | (1304.5966v1)

Abstract: Sequence alignment is one of the oldest and the most famous problems in bioinformatics. Even after 45 years, for one reason or another, this problem is still actual; current solutions are trade-offs between execution time, memory consumption and accuracy. We purpose SW#, a new CUDA GPU enabled and memory efficient implementation of dynamic programming algorithms for local alignment. In this implementation indels are treated using the affine gap model. Although there are other GPU implementations of the Smith-Waterman algorithm, SW# is the only publicly available implementation that can produce sequence alignments on genome-wide scale. For long sequences, our implementation is at least a few hundred times faster than a CPU version of the same algorithm.

Citations (60)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.