Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tight Performance Bounds for Approximate Modified Policy Iteration with Non-Stationary Policies (1304.5610v1)

Published 20 Apr 2013 in math.OC and cs.AI

Abstract: We consider approximate dynamic programming for the infinite-horizon stationary $\gamma$-discounted optimal control problem formalized by Markov Decision Processes. While in the exact case it is known that there always exists an optimal policy that is stationary, we show that when using value function approximation, looking for a non-stationary policy may lead to a better performance guarantee. We define a non-stationary variant of MPI that unifies a broad family of approximate DP algorithms of the literature. For this algorithm we provide an error propagation analysis in the form of a performance bound of the resulting policies that can improve the usual performance bound by a factor $O(1-\gamma)$, which is significant when the discount factor $\gamma$ is close to 1. Doing so, our approach unifies recent results for Value and Policy Iteration. Furthermore, we show, by constructing a specific deterministic MDP, that our performance guarantee is tight.

Citations (3)

Summary

We haven't generated a summary for this paper yet.