Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

One condition for solution uniqueness and robustness of both l1-synthesis and l1-analysis minimizations (1304.5038v4)

Published 18 Apr 2013 in cs.IT, math.IT, and math.OC

Abstract: The $\ell_1$-synthesis model and the $\ell_1$-analysis model recover structured signals from their undersampled measurements. The solution of former is a sparse sum of dictionary atoms, and that of the latter makes sparse correlations with dictionary atoms. This paper addresses the question: when can we trust these models to recover specific signals? We answer the question with a condition that is both necessary and sufficient to guarantee the recovery to be unique and exact and, in presence of measurement noise, to be robust. The condition is one--for--all in the sense that it applies to both of the $\ell_1$-synthesis and $\ell_1$-analysis models, to both of their constrained and unconstrained formulations, and to both the exact recovery and robust recovery cases. Furthermore, a convex infinity--norm program is introduced for numerically verifying the condition. A comprehensive comparison with related existing conditions are included.

Citations (53)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.