Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A New Analysis of Compressive Sensing by Stochastic Proximal Gradient Descent (1304.4680v2)

Published 17 Apr 2013 in cs.DS and math.OC

Abstract: In this manuscript, we analyze the sparse signal recovery (compressive sensing) problem from the perspective of convex optimization by stochastic proximal gradient descent. This view allows us to significantly simplify the recovery analysis of compressive sensing. More importantly, it leads to an efficient optimization algorithm for solving the regularized optimization problem related to the sparse recovery problem. Compared to the existing approaches, there are two advantages of the proposed algorithm. First, it enjoys a geometric convergence rate and therefore is computationally efficient. Second, it guarantees that the support set of any intermediate solution generated by the proposed algorithm is concentrated on the support set of the optimal solution.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.