Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Low-Rank Matrix and Tensor Completion via Adaptive Sampling (1304.4672v3)

Published 17 Apr 2013 in stat.ML

Abstract: We study low rank matrix and tensor completion and propose novel algorithms that employ adaptive sampling schemes to obtain strong performance guarantees. Our algorithms exploit adaptivity to identify entries that are highly informative for learning the column space of the matrix (tensor) and consequently, our results hold even when the row space is highly coherent, in contrast with previous analyses. In the absence of noise, we show that one can exactly recover a $n \times n$ matrix of rank $r$ from merely $\Omega(n r{3/2}\log(r))$ matrix entries. We also show that one can recover an order $T$ tensor using $\Omega(n r{T-1/2}T2 \log(r))$ entries. For noisy recovery, our algorithm consistently estimates a low rank matrix corrupted with noise using $\Omega(n r{3/2} \textrm{polylog}(n))$ entries. We complement our study with simulations that verify our theory and demonstrate the scalability of our algorithms.

Citations (157)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.