Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A new Bayesian ensemble of trees classifier for identifying multi-class labels in satellite images (1304.4077v2)

Published 15 Apr 2013 in stat.ME, cs.CV, and cs.LG

Abstract: Classification of satellite images is a key component of many remote sensing applications. One of the most important products of a raw satellite image is the classified map which labels the image pixels into meaningful classes. Though several parametric and non-parametric classifiers have been developed thus far, accurate labeling of the pixels still remains a challenge. In this paper, we propose a new reliable multiclass-classifier for identifying class labels of a satellite image in remote sensing applications. The proposed multiclass-classifier is a generalization of a binary classifier based on the flexible ensemble of regression trees model called Bayesian Additive Regression Trees (BART). We used three small areas from the LANDSAT 5 TM image, acquired on August 15, 2009 (path/row: 08/29, L1T product, UTM map projection) over Kings County, Nova Scotia, Canada to classify the land-use. Several prediction accuracy and uncertainty measures have been used to compare the reliability of the proposed classifier with the state-of-the-art classifiers in remote sensing.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.