Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Near-optimal Binary Compressed Sensing Matrix (1304.4071v3)

Published 15 Apr 2013 in cs.IT and math.IT

Abstract: Compressed sensing is a promising technique that attempts to faithfully recover sparse signal with as few linear and nonadaptive measurements as possible. Its performance is largely determined by the characteristic of sensing matrix. Recently several zero-one binary sensing matrices have been deterministically constructed for their relative low complexity and competitive performance. Considering the complexity of implementation, it is of great practical interest if one could further improve the sparsity of binary matrix without performance loss. Based on the study of restricted isometry property (RIP), this paper proposes the near-optimal binary sensing matrix, which guarantees nearly the best performance with as sparse distribution as possible. The proposed near-optimal binary matrix can be deterministically constructed with progressive edge-growth (PEG) algorithm. Its performance is confirmed with extensive simulations.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.