Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

On Model-Based RIP-1 Matrices (1304.3604v3)

Published 12 Apr 2013 in cs.DS, cs.IT, math.IT, and math.NA

Abstract: The Restricted Isometry Property (RIP) is a fundamental property of a matrix enabling sparse recovery. Informally, an m x n matrix satisfies RIP of order k in the l_p norm if ||Ax||_p \approx ||x||_p for any vector x that is k-sparse, i.e., that has at most k non-zeros. The minimal number of rows m necessary for the property to hold has been extensively investigated, and tight bounds are known. Motivated by signal processing models, a recent work of Baraniuk et al has generalized this notion to the case where the support of x must belong to a given model, i.e., a given family of supports. This more general notion is much less understood, especially for norms other than l_2. In this paper we present tight bounds for the model-based RIP property in the l_1 norm. Our bounds hold for the two most frequently investigated models: tree-sparsity and block-sparsity. We also show implications of our results to sparse recovery problems.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.