On Model-Based RIP-1 Matrices (1304.3604v3)
Abstract: The Restricted Isometry Property (RIP) is a fundamental property of a matrix enabling sparse recovery. Informally, an m x n matrix satisfies RIP of order k in the l_p norm if ||Ax||_p \approx ||x||_p for any vector x that is k-sparse, i.e., that has at most k non-zeros. The minimal number of rows m necessary for the property to hold has been extensively investigated, and tight bounds are known. Motivated by signal processing models, a recent work of Baraniuk et al has generalized this notion to the case where the support of x must belong to a given model, i.e., a given family of supports. This more general notion is much less understood, especially for norms other than l_2. In this paper we present tight bounds for the model-based RIP property in the l_1 norm. Our bounds hold for the two most frequently investigated models: tree-sparsity and block-sparsity. We also show implications of our results to sparse recovery problems.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.