Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Probability Judgement in Artificial Intelligence (1304.3429v1)

Published 27 Mar 2013 in cs.AI

Abstract: This paper is concerned with two theories of probability judgment: the Bayesian theory and the theory of belief functions. It illustrates these theories with some simple examples and discusses some of the issues that arise when we try to implement them in expert systems. The Bayesian theory is well known; its main ideas go back to the work of Thomas Bayes (1702-1761). The theory of belief functions, often called the Dempster-Shafer theory in the artificial intelligence community, is less well known, but it has even older antecedents; belief-function arguments appear in the work of George Hooper (16401723) and James Bernoulli (1654-1705). For elementary expositions of the theory of belief functions, see Shafer (1976, 1985).

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube