Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Inequality Paradigm for Probabilistic Knowledge (1304.3418v1)

Published 27 Mar 2013 in cs.AI

Abstract: We propose an inequality paradigm for probabilistic reasoning based on a logic of upper and lower bounds on conditional probabilities. We investigate a family of probabilistic logics, generalizing the work of Nilsson [14]. We develop a variety of logical notions for probabilistic reasoning, including soundness, completeness justification; and convergence: reduction of a theory to a simpler logical class. We argue that a bound view is especially useful for describing the semantics of probabilistic knowledge representation and for describing intermediate states of probabilistic inference and updating. We show that the Dempster-Shafer theory of evidence is formally identical to a special case of our generalized probabilistic logic. Our paradigm thus incorporates both Bayesian "rule-based" approaches and avowedly non-Bayesian "evidential" approaches such as MYCIN and DempsterShafer. We suggest how to integrate the two "schools", and explore some possibilities for novel synthesis of a variety of ideas in probabilistic reasoning.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)