Evaluation of Uncertain Inference Models I: PROSPECTOR
Abstract: This paper examines the accuracy of the PROSPECTOR model for uncertain reasoning. PROSPECTOR's solutions for a large number of computer-generated inference networks were compared to those obtained from probability theory and minimum cross-entropy calculations. PROSPECTOR's answers were generally accurate for a restricted subset of problems that are consistent with its assumptions. However, even within this subset, we identified conditions under which PROSPECTOR's performance deteriorates.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.