Papers
Topics
Authors
Recent
2000 character limit reached

A Generalized Online Mirror Descent with Applications to Classification and Regression (1304.2994v3)

Published 10 Apr 2013 in cs.LG

Abstract: Online learning algorithms are fast, memory-efficient, easy to implement, and applicable to many prediction problems, including classification, regression, and ranking. Several online algorithms were proposed in the past few decades, some based on additive updates, like the Perceptron, and some on multiplicative updates, like Winnow. A unifying perspective on the design and the analysis of online algorithms is provided by online mirror descent, a general prediction strategy from which most first-order algorithms can be obtained as special cases. We generalize online mirror descent to time-varying regularizers with generic updates. Unlike standard mirror descent, our more general formulation also captures second order algorithms, algorithms for composite losses and algorithms for adaptive filtering. Moreover, we recover, and sometimes improve, known regret bounds as special cases of our analysis using specific regularizers. Finally, we show the power of our approach by deriving a new second order algorithm with a regret bound invariant with respect to arbitrary rescalings of individual features.

Citations (78)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.