Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Belief in Belief Functions: An Examination of Shafer's Canonical Examples (1304.2715v1)

Published 27 Mar 2013 in cs.AI

Abstract: In the canonical examples underlying Shafer-Dempster theory, beliefs over the hypotheses of interest are derived from a probability model for a set of auxiliary hypotheses. Beliefs are derived via a compatibility relation connecting the auxiliary hypotheses to subsets of the primary hypotheses. A belief function differs from a Bayesian probability model in that one does not condition on those parts of the evidence for which no probabilities are specified. The significance of this difference in conditioning assumptions is illustrated with two examples giving rise to identical belief functions but different Bayesian probability distributions.

Citations (10)

Summary

We haven't generated a summary for this paper yet.