Papers
Topics
Authors
Recent
2000 character limit reached

Belief in Belief Functions: An Examination of Shafer's Canonical Examples (1304.2715v1)

Published 27 Mar 2013 in cs.AI

Abstract: In the canonical examples underlying Shafer-Dempster theory, beliefs over the hypotheses of interest are derived from a probability model for a set of auxiliary hypotheses. Beliefs are derived via a compatibility relation connecting the auxiliary hypotheses to subsets of the primary hypotheses. A belief function differs from a Bayesian probability model in that one does not condition on those parts of the evidence for which no probabilities are specified. The significance of this difference in conditioning assumptions is illustrated with two examples giving rise to identical belief functions but different Bayesian probability distributions.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.