Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Binary Hypothesis Testing Game with Training Data (1304.2172v1)

Published 8 Apr 2013 in cs.IT, cs.GT, and math.IT

Abstract: We introduce a game-theoretic framework to study the hypothesis testing problem, in the presence of an adversary aiming at preventing a correct decision. Specifically, the paper considers a scenario in which an analyst has to decide whether a test sequence has been drawn according to a probability mass function (pmf) P_X or not. In turn, the goal of the adversary is to take a sequence generated according to a different pmf and modify it in such a way to induce a decision error. P_X is known only through one or more training sequences. We derive the asymptotic equilibrium of the game under the assumption that the analyst relies only on first order statistics of the test sequence, and compute the asymptotic payoff of the game when the length of the test sequence tends to infinity. We introduce the concept of indistinguishability region, as the set of pmf's that can not be distinguished reliably from P_X in the presence of attacks. Two different scenarios are considered: in the first one the analyst and the adversary share the same training sequence, in the second scenario, they rely on independent sequences. The obtained results are compared to a version of the game in which the pmf P_X is perfectly known to the analyst and the adversary.

Citations (31)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.