Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A Logical Interpretation of Dempster-Shafer Theory, with Application to Visual Recognition (1304.1523v1)

Published 27 Mar 2013 in cs.AI

Abstract: We formulate Dempster Shafer Belief functions in terms of Propositional Logic using the implicit notion of provability underlying Dempster Shafer Theory. Given a set of propositional clauses, assigning weights to certain propositional literals enables the Belief functions to be explicitly computed using Network Reliability techniques. Also, the logical procedure corresponding to updating Belief functions using Dempster's Rule of Combination is shown. This analysis formalizes the implementation of Belief functions within an Assumption-based Truth Maintenance System (ATMS). We describe the extension of an ATMS-based visual recognition system, VICTORS, with this logical formulation of Dempster Shafer theory. Without Dempster Shafer theory, VICTORS computes all possible visual interpretations (i.e. all logical models) without determining the best interpretation(s). Incorporating Dempster Shafer theory enables optimal visual interpretations to be computed and a logical semantics to be maintained.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)