Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Improved approximation for 3-dimensional matching via bounded pathwidth local search (1304.1424v2)

Published 4 Apr 2013 in cs.DS

Abstract: One of the most natural optimization problems is the k-Set Packing problem, where given a family of sets of size at most k one should select a maximum size subfamily of pairwise disjoint sets. A special case of 3-Set Packing is the well known 3-Dimensional Matching problem. Both problems belong to the Karps list of 21 NP-complete problems. The best known polynomial time approximation ratio for k-Set Packing is (k + eps)/2 and goes back to the work of Hurkens and Schrijver [SIDMA89], which gives (1.5 + eps)-approximation for 3-Dimensional Matching. Those results are obtained by a simple local search algorithm, that uses constant size swaps. The main result of the paper is a new approach to local search for k-Set Packing where only a special type of swaps is considered, which we call swaps of bounded pathwidth. We show that for a fixed value of k one can search the space of r-size swaps of constant pathwidth in cr poly(|F|) time. Moreover we present an analysis proving that a local search maximum with respect to O(log |F|)-size swaps of constant pathwidth yields a polynomial time (k + 1 + eps)/3-approximation algorithm, improving the best known approximation ratio for k-Set Packing. In particular we improve the approximation ratio for 3-Dimensional Matching from 3/2 + eps to 4/3 + eps.

Citations (82)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)