Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A problem dependent analysis of SOCP algorithms in noisy compressed sensing (1304.0480v1)

Published 29 Mar 2013 in cs.IT, math.IT, and stat.ML

Abstract: Under-determined systems of linear equations with sparse solutions have been the subject of an extensive research in last several years above all due to results of \cite{CRT,CanRomTao06,DonohoPol}. In this paper we will consider \emph{noisy} under-determined linear systems. In a breakthrough \cite{CanRomTao06} it was established that in \emph{noisy} systems for any linear level of under-determinedness there is a linear sparsity that can be \emph{approximately} recovered through an SOCP (second order cone programming) optimization algorithm so that the approximate solution vector is (in an $\ell_2$-norm sense) guaranteed to be no further from the sparse unknown vector than a constant times the noise. In our recent work \cite{StojnicGenSocp10} we established an alternative framework that can be used for statistical performance analysis of the SOCP algorithms. To demonstrate how the framework works we then showed in \cite{StojnicGenSocp10} how one can use it to precisely characterize the \emph{generic} (worst-case) performance of the SOCP. In this paper we present a different set of results that can be obtained through the framework of \cite{StojnicGenSocp10}. The results will relate to \emph{problem dependent} performance analysis of SOCP's. We will consider specific types of unknown sparse vectors and characterize the SOCP performance when used for recovery of such vectors. We will also show that our theoretical predictions are in a solid agreement with the results one can get through numerical simulations.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)